Integrated Resource Plan TVA'S ENVIRONMENTAL AND ENERGY FUTURE Stakeholder Review Group Working Session January 26, 2011 Knoxville, TN 2010 | 10:00-10:15 | Introduction | Randy McAdams | |-------------|--|-----------------| | 10:15-11:00 | Updated Results from Ongoing Analysis | Gary Brinkworth | | 11:00-11:30 | Open Discussion | | | 11:30-12:30 | Lunch | | | 12:30-2:00 | Preliminary Recommendations and Scorecards | Gary Brinkworth | | 2:15-3:15 | Open Discussion | | | 3:00-3:15 | Next Steps | Gary Brinkworth | | 3:15-3:30 | Wrap-Up | Randy McAdams | # **M** Introduction ### **SRG Purpose** - Provide TVA with in-depth ongoing discussion and input from different stakeholder viewpoints - Serve as a source of information, a coordination mechanism, and a professional review group - Build efficiency into the study process by providing real-time public input to IRP issues and processes - Validate the various steps in the IRP process ### **SRG Meeting Types** - ◆ Working Sessions regular meetings that are not open to the general public - Workshops the SRG, by majority vote, can request TVA hold additional "workshops" to provide more in-depth information on specific topics to those members who are interested in attending - Public Comment Sessions by majority vote, the SRG may host a public comment session to receive input on specific topics ### The IRP process that has been previously shared can be summarized into six high-level steps ### The SRG has reviewed and provided input on the following topics: | Complete | Complete | Complete | Complete | In Process | In Process | |----------|------------------------------|----------------------|-------------------------------|-------------------|-------------------------------------| | Scope | Develop Inputs and Framework | Analyze and Evaluate | Present
Initial
Results | Incorporate Input | Identify
Recommended
Strategy | - Planning process - Key uncertainties - Updated scenario/worlds - Demand-side resource options - Supply-side resource options - Busbar screening results for supply-side resource options - Load forecast - Environmental outlook - Commodity price forecasts - Financial parameters - Energy efficiency and demand response - Planning strategies - IRP scorecard and evaluation metrics - Preliminary model results ### **Approach From Draft to Final IRP** - Incorporate public comments and input - Evaluate and optimize components of retained planning strategies through ongoing analysis - Refresh and rescore the ranking and strategic metrics to evaluate new component combinations identified in analysis - Identify recommended planning strategy through TVA leadership's evaluation of analysis results, stakeholder input, and other considerations - Present recommendations and alternatives considered for Board approval # **Expectations for the Final IRP** ### **The Final IRP Will** ### The Final IRP Will Not | Articulate a 20-year planning strategy | Make specific asset decisions Substitute for the "fine tuning" of annual planning | |---|--| | Present a recommended planning strategy and alternatives considered | Narrow the breadth of NEPA coverage established in the Draft IRP and EIS | | Describe guideline ranges for key components of
the recommend planning strategy | Make specific commitments for key components | | Present illustrative portfolios that show potential asset additions by year | Commit to a specific 20-year capacity addition schedule | | Highlight key asset additions by showing a specific value within the guideline range | Imply that any asset addition or in-service date shown represents a formal decision | | Discuss other strategic considerations | Quantify and score all risks in the analysis | | Commit to beginning the next IRP no later than 2015 | Provide coverage for the same duration as the previous IRP | ### **Analysis Approach to Develop a Recommended Strategy** Components from the planning strategies retained in the Draft IRP establish the boundaries for optimization | | Attributes | | Range of Options Tested | | | | | | | | |---|-------------------------------------|---|---|---|--|---|---|---|---|--| | | EE/DR | - 2,100 MW & 5,900 annual GWh
reductions by 2020 | | | - 3,600 MW & 11,400 annual GWh
reductions by 2020 | | | - 5,100 MW & 14,400 annual GWh reductions by 2020 | | | | _ | Renewable
Additions ¹ | - 1,500 MW
competitive
resources or PPAs
by 2020 | - 2,500 M¹
competit
resource
by 2029 | | - 2,500 M
competit
resource
by 2020 | | - 3,500 MW
competitive
resources or PPAs
by 2029 | | - 3,500 MW
competitive
resources or PPAs
by 2020 | | | | Fossil Capacity
Idled | - 2,400 MW total fleet
reductions by 2017 | | - 3,200 MW total fleet reductions by 2017 | | - 4,000 MW total fleet reductions by 2017 | | | 700 MW total fleet
ductions by 2017 | | - A proposed strategy is designed based on optimization results and ranking metrics scores - Strategy components are selected from optimization cases that perform best across the scenarios tested #### **Ranking Metric Worksheet** | | Idled | | Scenarios | | | | |----------|----------|------|-----------|------|-------|--| | | Capacity | Sc 1 | Sc 3 | Sc 8 | Total | | | | 2,400 | | | | | | | Weighted | 3,200 | | | | | | | Ranking | 4,000 | | | | | | | | 4,700 | | | | | | The proposed strategy is evaluated in all scenarios (cost and risk metrics are computed) #### **Scenario Matrix** | | Scenarios | | | | | | | | |--------------------|-----------|----|----|----|----|----|----|----| | | #1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | | Optimized Strategy | | | | | | | | | - These results are used to build a fully populated scorecard with ranking and strategic metrics - The completed scorecard is compared with Draft IRP results to evaluate improvement over previously considered alternatives #### **Fully Populated Scorecard** | | | R | anking Metri | cs | | | 5 | trategic Me | trics | | | |-----------|-----------|-------------------------------|-------------------|------------------|---------------------|------------------------------|---------------------------|-------------|---------------------|---------------------------------|--| | | | | Energy Supply | / | | Environ | Environmental Stewardship | | | Economic Impact | | | Scenarios | Plan Cost | Short-Term
Rate
Impacts | Risk /
Benefit | Risk
Exposure | Total Plan
Score | CO ₂
Footprint | Water | Waste | Total
Employment | Growth in
Personal
Income | | | 1 | 99.43 | 99.21 | 97.82 | 96.78 | 98.58 | • | • | • | 0.8% | 0.6% | | | 2 | 100.00 | 99.22 | 99.79 | 100.00 | 99.80 | • | • | • | | | | | 3 | 99.15 | 96.03 | 95.91 | 97.73 | 97.72 | • | • | • | | | | | 4 | 99.45 | 99.58 | 95.32 | 89.57 | 96.73 | 0 | • | • | | | | | 5 | 99.83 | 99.50 | 98.87 | 99.47 | 99.56 | 4 | 3 | • | | | | | 6 | 99.16 | 95.61 | 100.00 | 100.00 | 98.64 | • | 3 | 3 | 0.3% | 0.2% | | | Baseline | 99.68 | 99.77 | 98.98 | 98.96 | 99.45 | 3 | 9 | 3 | | | | | | | | Total Ranking | Metric Score | 690.47 | | - | | | | | ### **Preliminary Outcome of Resource Optimization** - The following slide shows the resource addition schedules - Abbreviations are summarized in the following table: | Unit Abbreviation | Name | |--------------------|---| | BLN 1 ¹ | Bellefonte Nuclear Unit | | CC | Combined Cycle Combustion Turbine (Natural Gas) | | СТ | Combustion Turbine (Natural Gas) ~800 MW | | СТа | Combustion Turbine (Natural Gas) ~600 MW | | GL CT Ref | Refurbishment of Combustion Turbine at Gleason | | IGCC | Integrated Gasification Combined Cycle (Coal) | | JSF CC | John Sevier Combined Cycle | | NUC | Nuclear Unit AP1000 | | PPAs & Acqs | Purchased Power Agreements and Acquisitions | | PSH | Pumped Storage Hydro | | SCPC | Supercritical Pulverized Coal | | WBN 2 | Watts Bar Nuclear Unit 2 | # **Capacity Additions by Scenario** | | Scenario 1 Capacity Additions | | | | | | | |-------------------------------------|-------------------------------|-------|-------|-------|--|--|--| | Idled Capacity | 2,400 | 3,200 | 4,000 | 4,700 | | | | | Renewable
Portfolio ¹ | 2,500 | 2,500 | 2,500 | 2,500 | | | | | EEDR
Portfolio ² | 5,074 | 5,074 | 5,074 | 5,074 | | | | | Scenario 8 Capacity Additions | | | | | | | | | |-------------------------------|-------------------------|-------|-------|--|--|--|--|--| | 2,400 | 2,400 3,200 4,000 4,700 | | | | | | | | | 1,500 | 1,500 | 1,500 | 1,500 | | | | | | | 3,627 | 3,627 | 5,074 | 5,074 | | | | | | | Scenario 3 Capacity Additions | | | | | | | | |-------------------------------|-------|-------|-------|--|--|--|--| | 2,400 3,200 4,000 4,700 | | | | | | | | | 1,500 | 1,500 | 1,500 | 1,500 | | | | | | 3,627 | 3,627 | 3,627 | 3,627 | | | | | | 2010 | PPAs & | PPAs & | PPAs & | PPAs & | |------|-----------|-----------|-----------|-----------| | 2010 | Acqs | Acqs | Acqs | Acqs | | 2011 | | | | | | 2012 | JSF CC | JSF CC | JSF CC | JSF CC | | 2013 | WBN 2 | WBN 2 | WBN 2 | WBN 2 | | 2014 | | | | | | | GL CT Ref | GL CT Ref | CC | CC (2) | | 2015 | PPAs & | PPAs & | GL CT Ref | GL CT Ref | | 2015 | Acqs | Acqs | PPAs & | PPAs & | | | | | Acqs | Acqs | | 2016 | | CC | СТа | СТа | | 2017 | CC | СТа | СТ | CTa | | 2018 | BLN 1 | BLN 1 | BLN 1 | BLN 1 | | 2019 | | | | | | 2020 | BLN 2 | BLN 2 | BLN 2 | BLN 2 | | 2020 | PSH | PSH | PSH | PSH | | 2021 | | | | | | 2022 | СТ | CC | CC | CC | | 2022 | СТа | CT | СТ | CT | | 2023 | CT | СТ | СТа | СТ | | 2024 | NUC | NUC | NUC | NUC | | 2025 | IGCC | | IGCC | IGCC | | 2026 | NUC | NUC | NUC | NUC | | 2027 | СТ | СТ | IGCC | IGCC | | 2028 | СТ | СТ | СТ | СТа | | 2028 | | | | IGCC | | 2029 | CC | СТ | СТ | СТа | | 2023 | | IGCC | IGCC | IGCC | | JSF CC | JSF CC | JSF CC | JSF CC | |-----------|-----------|-----------|-----------------| | WBN 2 | WBN 2 | WBN 2 | WBN 2 | | | | | | | GL CT Ref | GL CT Ref | GL CT Ref | CC
GL CT Ref | BLN 1 | BLN 1 | BLN 1 | BLN 1 | | PSH | PSH | PSH | PSH | | BLN 2 | BLN 2 | BLN 2 | BLN 2 | | BLIN 2 | BLIN 2 | BLIN 2 | BLIN 2 | | | | | | | | | | | | | | | | | | СТа | | | | | | | | | СТа | СТ | СТа | СТа | | СТ | СТ | СТа | СТа | | JSF CC | JSF CC | JSF CC | |--------|--------|-------------| | WBN 2 | WBN 2 | WBN 2 | | | | | | | | СС | | | | | | | | | | | | | | | | | | PSH | PSH | PSH | WBN 2 | WBN 2 WBN 2 | ^{1 –} Renewable portfolio values shown are in nameplate capacity. Net dependable values would be lower ^{2 –} Selected portfolio is represented by demand reduction achieved (MW) by 2020 ### **Financial Impacts** - The table to the right summarizes preliminary results for the following financial measures - PVRR: Present Value of Revenue Requirements - Short-Term Rate Impacts: total revenue derived from both Base and FCA per MWh of native sales - Risk / Benefit Ratio: the potential of exceeding the expected PVRR vs. the potential benefit of not exceeding - Risk ratio: the potential of exceeding the expected PVRR - Preliminary observations: - Financial measures vary significantly across each of the scenarios - However, there is little variation between different levels of idled fossil capacity within a particular scenario | | | | • | | |--------------------------------|----------|-------|-----------|-------| | | ldled | | Scenarios | | | | Capacity | Sc 1 | Sc 3 | Sc 8 | | | 2,400 | 170.9 | 108.6 | 123.1 | | PVRR (2010B\$) | 3,200 | 172.4 | 108.0 | 123.1 | | F VIXIX (2010D\$) | 4,000 | 175.3 | 107.6 | 122.0 | | | 4,700 | 177.6 | 108.2 | 122.5 | | | | | | | | Chart Tarra Data | 2,400 | 82.24 | 74.00 | 76.79 | | Short-Term Rate Impacts \$/MWh | 3,200 | 82.49 | 73.21 | 76.74 | | (level 2011-18) | 4,000 | 82.85 | 72.55 | 76.56 | | (10701 2011 10) | 4,700 | 83.56 | 72.90 | 76.92 | | | | | | | | | 2,400 | 1.41 | 0.88 | 1.07 | | Risk / Benefit Ratio | 3,200 | 1.41 | 0.90 | 1.07 | | Nisk / Delient Natio | 4,000 | 1.39 | 0.94 | 1.08 | | | 4,700 | 1.39 | 0.95 | 1.08 | | | | | | | | | 2,400 | 0.229 | 0.086 | 0.142 | | Risk Ratio | 3,200 | 0.232 | 0.091 | 0.143 | | Man Mano | 4,000 | 0.228 | 0.097 | 0.148 | | | 4,700 | 0.227 | 0.100 | 0.149 | # **Observations Developed from Preliminary Results** | Component | Observations | |-----------------------|---| | | ◆ Nuclear expansion is present in the majority of portfolios | | Nuclear additions | ◆ Up to two units are added between 2018 and 2022 | | | ◆ No additions are made in scenarios with nearly-flat load growth | | Coal additions | ◆ New coal capacity is only selected after 2025 in scenarios with dramatic load growth | | | Expansion of natural gas is needed, but typically occurs after 2024 with simple-cycle
combustion turbines | | Natural gas additions | ◆ The dramatic load growth scenario is an exception as combined cycles and combustion turbines are chosen as early as 2015 | | | ◆ Additional units may be required for reliability and/or grid stability | | Renewable | ◆ Model results tend to favor the current wind contracts (1,500 MW) as the least cost plan | | additions | ◆ The renewable portfolio that delivers 2,500 MW by 2029 is selected in the dramatic load growth scenario | | EEDR | ◆ Results evenly split in selecting either the 3,600 MW by 2020 portfolio and the 5,000 MW by 2020 portfolio | ## **Analysis Approach to Develop a Recommended Strategy** Components from the planning strategies retained in the Draft IRP establish the boundaries for optimization | | Attributes | Range of Options Tested | | | | | | | | | |---|-------------------------------------|---|--|---|---|--|--|------------------------|--|---| | | EE/DR | - 2,100 MW & 5,900 ar
reductions by 2020 | | - 3,600 MW & 11,400 annual GWh reductions by 2020 | | h - 5,100 MW & 14,400 annual GWI
reductions by 2020 | | | | | | _ | Renewable
Additions ¹ | - 1,500 MW
competitive
resources or PPAs
by 2020 | - 2,500 MW
competitive
resources or
by 2029 | PPAs | - 2,500 MW
competitive
resources or PPAs
by 2020 | | | petitive
urces or P | PAs | - 3,500 MW
competitive
resources or PPAs
by 2020 | | | Fossil Capacity
Idled | - 2,400 MW total fleet
reductions by 2017 | | | | | | | 4,700 MW total fleet
reductions by 2017 | | - A proposed strategy is designed based on optimization results and ranking metrics scores - Strategy components are selected from optimization cases that perform best across the scenarios tested #### **Ranking Metric Worksheet** | | Idled | | | | | |----------|----------|------|------|------|-------| | | Capacity | Sc 1 | Sc 3 | Sc 8 | Total | | | 2,400 | | | | | | Weighted | 3,200 | | | | | | Ranking | 4,000 | | | | | | | 4,700 | | | | | The proposed strategy is evaluated in all scenarios (cost and risk metrics are computed) #### **Scenario Matrix** | | Scenarios | | | | | | | | |--------------------|-----------|----|----|----|----|----|----|----| | | #1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | | Optimized Strategy | | | | | | | | | - These results are used to build a fully populated scorecard with ranking and strategic metrics - The completed scorecard is compared with Draft IRP results to evaluate improvement over previously considered alternatives #### **Fully Populated Scorecard** | | Ranking Metrics | | | | | | 5 | trategic Me | trics | | | |-----------|-----------------|-------------------------------|-------------------|------------------|---------------------|------------------------------|-------------|-------------|---------------------|---------------------------------|--| | | | | Energy Supply | / | | Environ | mental Stew | ardship | Economi | Economic Impact | | | Scenarios | Plan Cost | Short-Term
Rate
Impacts | Risk /
Benefit | Risk
Exposure | Total Plan
Score | CO ₂
Footprint | Water | Waste | Total
Employment | Growth in
Personal
Income | | | 1 | 99.43 | 99.21 | 97.82 | 96.78 | 98.58 | • | • | • | 0.8% | 0.6% | | | 2 | 100.00 | 99.22 | 99.79 | 100.00 | 99.80 | • | • | • | | | | | 3 | 99.15 | 96.03 | 95.91 | 97.73 | 97.72 | • | • | • | | | | | 4 | 99.45 | 99.58 | 95.32 | 89.57 | 96.73 | 0 | • | • | | | | | 5 | 99.83 | 99.50 | 98.87 | 99.47 | 99.56 | • | 9 | 9 | | | | | 6 | 99.16 | 95.61 | 100.00 | 100.00 | 98.64 | • | 4 | • | 0.3% | 0.2% | | | Baseline | 99.68 | 99.77 | 98.98 | 98.96 | 99.45 | 3 | 3 | 3 | | | | | | | | Total Ranking | Metric Score | 690.47 | | _ | | | | | ### **Identifying Recommended Strategy Components** - Ranking metrics used in the Draft IRP were applied to select a level of idled coal capacity from the options considered - Each idled capacity level was given an ordinal rank for each metric within a scenario (a rank of 1 the "best") - A summary of the ranking metric worksheet is shown to the right - Rankings were weighted using the same criteria applied in the Draft IRP - 65% Cost (65% PVRR + 35% Short-term rates) - 35% Risk (35% Risk / Benefit + 65% Risk) - Weighted ranking scores were summed for each idled capacity level to create total ranking scores - Results are summarized in the table to the right - Based on the ranking results, 4,000 MW was chosen as the scorecard value - The guideline range would be 2,400 to 4,000 MW #### **Ranking Metric Worksheet** | | Idled | Scenarios | | | | | | |------|----------|-----------|------|------|--|--|--| | | Capacity | Sc 1 | Sc 3 | Sc 8 | | | | | | 2,400 | 1 | 4 | 3 | | | | | PVRR | 3,200 | 2 | 2 | 4 | | | | | PVKK | 4,000 | 3 | 1 | 1 | | | | | | 4,700 | 4 | 3 | 2 | | | | | | 2,400 | 1 | 4 | 3 | |--------------|-------|---|---|---| | Short-Term | 3,200 | 2 | 3 | 2 | | Rate Impacts | 4,000 | 3 | 1 | 1 | | | 4,700 | 4 | 2 | 4 | | | 2,400 | 3 | 1 | 2 | |----------------|-------|---|---|---| | Risk / Benefit | 3,200 | 4 | 2 | 1 | | Ratio | 4,000 | 1 | 3 | 3 | | | 4,700 | 2 | 4 | 4 | | Risk Ratio | 2,400 | 3 | 1 | 1 | |------------|-------|---|---|---| | | 3,200 | 4 | 2 | 2 | | KISK KALIO | 4,000 | 2 | 3 | 3 | | | 4,700 | 1 | 4 | 4 | | | Idled | | | | | |----------|----------|------|------|------|-------| | | Capacity | Sc 1 | Sc 3 | Sc 8 | Total | | | 2,400 | 1.7 | 3.0 | 2.4 | 7.1 | | Weighted | 3,200 | 2.7 | 2.2 | 2.7 | 7.7 | | Ranking | 4,000 | 2.5 | 1.7 | 1.7 | 5.9 | | | 4,700 | 3.1 | 3.1 | 3.2 | 9.4 | # **Identifying Recommended Strategy Components (Cont'd)** Using the 4,000 MW idled coal capacity as a fixed assumption, model results were reviewed to identify trends for other key component choices | Component | Observations | Recommendation | | |--------------------------|---|--|--| | Nuclear additions | Nuclear expansion is present in the majority of the portfolios Results indicate that BLN 1 is selected between 2018 and 2020 Aligned with Vision statement to be a national leader in increased nuclear production | Include a selection window for BLN 1 between 2018 and 2020 | | | Coal additions | New coal capacity is only selected in Scenario 1 | Allow selection after 2025 | | | Natural gas
additions | The majority of gas additions are new gas-fired capacity is simple-cycle CT's added after 2025 Scenario 1 is an exception as CC's and CT's are chosen as early as 2015 | Allow gas capacity to be added throughout study period | | | Renewable
additions | Model results tend to favor the current wind contracts Significant feedback on Draft IRP from stakeholders asked for greater renewable additions The premium to include the 2,500MW portfolio over the existing wind contracts is 0.9% of the total plan cost | Include the 2,500 MW by 2020 portfolio in the recommended strategy | | | EEDR | Results evenly split in selecting either the SE leader portfolio (3,600MW by 2020) or the larger portfolio from Draft IRP (5,000MW by 2020) 3,600 MW by 2020 portfolio is consistent with Vision statement to be a Southeast leader in increased energy efficiency | Include 3,600 MW and 11,400 GWh by 2020 portfolio in the recommended planning strategy | | ## **Recommended Planning Strategy** | Component | Recommendations ¹ | Guideline
MW Range | Window of
Time | Key Determinants | |---------------------------|--|------------------------------------|-------------------|---| | EEDR | Expand contribution of EEDR in the portfolio | 3,600-5,100
(11,400-14,400 GWh) | By 2020 | Success of partnership with diverse distributor group Rate of customer adoption and demand for program offerings Expansion of smart grid infrastructure | | Renewable
additions | Capitalize on opportunities to
make cost-effective
renewable additions | 1,500-2,500 ² | By 2029 | Timely build-out of transmission infrastructure to support out-of-Valley purchases Development of economic in-Valley renewable options | | Coal
capacity
idled | Increase amount of coal capacity idled | 2,400-4,000 | By 2017 | Limits imposed by HAPs MACT in 2015 Passage of federal climate change legislation and final decision on mercury and other particulates | | Energy
Storage | Add pumped storage hydro to increase operational flexibility | 850 | 2020-2024 | Operational challenges as generation mix changes | | Nuclear
additions | Increase contribution of
nuclear generation | 1,140-3,660 | 2013-2022 | Licensing and permitting timeline Availability of key design and construction staff | | Coal
additions | Preserve option of generation
with carbon capture | 0-500 | 2025-2029 | Successful demonstration of carbon-capture and sequestration at scale | | Natural gas
additions | Preserve the option for additional capacity | 880-2,880 ³ | 2012-2029 | Cost and availability of natural gas supply Grid stability requirements | ^{1 –} Recommendations based on bounded optimizations runs and sensitivities ^{2 –} Values are nameplate capacity. Net dependable capacity would be lower ^{3 –} Does not include refurbishment of Gleason combustion turbine ### **Recommended Planning Strategy and Illustrative Portfolios** - Optimization analysis (nearly 3,000 cases) identifies scorecard values that are used to create illustrative portfolios - Illustrative portfolios are required to: - Describe how the recommended strategy could be implemented - Build a complete scorecard - Calculate environmental impacts - Illustrative portfolios are based on a particular set of assumptions and do not imply that any asset addition or in-service date shown represents a formal decision - ◆ TVA's commitment to begin the next IRP process within 5 years, as well the annual planning processes, will allow for future refinement #### **Recommended Planning Strategy** | Key Components | Guideline Range | Scorecard Value | |----------------------------------|----------------------------------|------------------------| | Coal capacity idled | 2,400-4,000 MW | 4,000 MW | | Renewable additions ¹ | 1,500-2,500 MW | 2,500 MW | | EEDR portfolio ² | 3,600-5,100
11,400-14,400 GWh | 3,600 MW
11,400 GWh | ^{1 -} Values are nameplate capacity. Net dependable capacity would be lower ### **Change of Scorecard Values Over Time** ^{2 -} Capacity and energy savings achieved by 2020 ### **Preliminary Illustrative Portfolios** - Illustrative portfolios are based on scorecard values selected from optimization analysis - Changes in scorecard values would produce different portfolios - EEDR and renewable additions are present in every year for all scenarios - Near-Term Additions (0-5 years) - Illustrative portfolios are consistent in the near-term - Board-approved projects at JSF and WBN are added - Additional natural gas and purchased power may be required depending on load growth - Long-Term Additions (5-15 years) - Nuclear expansion is present in almost every portfolio with first unit between 2018-2020 - Expansion of new natural gas capacity typically occurs after 2024 except in high load growth scenarios ### **Preliminary Illustrative Portfolios** | | Treminiary mustrative rollionos | | | | | | | | | | |-----------|---------------------------------|-----------|----------|---------|------------|------------|-----------|--------|--------|--------| | | | | | Capaci | ty Additio | ons by Sc | enario | | | | | | | Renew- | | | | | | | | | | Year | EEDR | ables | SC 1 | SC 2 | SC 3 | SC 4 | SC 5 | SC 6 | SC 7 | SC 8 | | 2010 | 300 MW | 300 MW | PPAs | | | | | | | | | 2011 | | _ | | | | | | | | | | 2012 | | _ | JSF CC | 2013 | | | WBN 2 | 2013 | | | PPAs | | | | | | | | | 2014 | _ | | СТа | | | СТа | | | | | | 2014 | \ | \ | | | | PPAs | | | | | | | | | CC | | | CC | СТа | | СТа | СТа | | 2015 | 2,100 MW | 1.900 MW | СТа | | | | | | | | | | _, | _, | CT | | | DD 4 - | DD4- | | DD 4 - | DDA- | | 2016 | | | PPAs | | | PPAs | PPAs | | PPAs | PPAs | | 2016 | - | - | СТ | | | СТа | | | | | | 2017 | | | 51114 | 51114 | | 51114 | | | 51114 | | | 2018 | | | BLN 1 | BLN 1 | | BLN 1 | | | BLN 1 | | | 2019 | | | | | | | | | | | | 2020 | ! | ! | BLN 2 | BLN 2 | PSH | BLN 2 | BLN 1 | PSH | BLN 2 | BLN 1 | | | ļ. | | PSH | PSH | | PSH | PSH | | PSH | PSH | | 2021 | l | ļ. | CC | | | | | | | | | 2022 | | | CC | | | | BLN 2 | | | BLN 2 | | 2023 | | | СТ | | | | | | СТа | | | 2024 | - | | NUC | | | | | | | | | 2025 | i i | | IGCC | | | | | | СТа | | | 2026 | <u> </u> | | NUC | | | | | | | СТа | | 2027 | i i | i | СТ | | | | | | СТ | | | 2028 | ₩ | Ť | СТ | | | | СТа | | | СТ | | 2029 | 4,600 MW | 2 600 MW | СТ | СТа | | | СТа | | СТ | СТа | | | | | IGCC | | | | | | | | | *Illustra | tive portf | olios ass | ume 4,00 | 0 MW of | idled fos | sil capaci | ty by 201 | 5 | | | | Additions | | | | | | | | |-----------------|--|--------------|--|--|--|--|--| | Natural Gas | | Pumped Hydro | | | | | | | Coal | | Renewables | | | | | | | Nuclear | | EEDR | | | | | | | Purchased Power | | | | | | | | ### **Evaluating Results** Components from the planning strategies retained in the Draft IRP establish the boundaries for optimization | | Attributes | | Range of Options Tested | | | | | | | | | |---|-------------------------------------|---|-------------------------|---|---|---|-------------------------------------|--|--|--|---| | | EE/DR | - 2,100 MW & 5,900 annual GWh reductions by 2020 | | | - 3,600 MW & 11,400 annual GWh reductions by 2020 | | | | - 5,100 MW & 14,400 annual GWh
reductions by 2020 | | | | _ | Renewable
Additions ¹ | - 1,500 MW
competitive
resources or PPAs
by 2020 | con | 00 MW
npetitive
ources or
2029 | PPAs | - 2,500 MV
competit
resource
by 2020 | | | petitive
urces or PPAs | | - 3,500 MW
competitive
resources or PPAs
by 2020 | | | Fossil Capacity
Idled | - 2,400 MW total fleet
reductions by 2017 | | - 3,200 f | MW tota
ons by 2 | | - 4,000 M ¹
reduction | | | | 700 MW total fleet
ductions by 2017 | A proposed strategy is designed based on optimization results and ranking metrics scores Strategy components are selected from optimization cases that perform best across the scenarios tested #### **Ranking Metric Worksheet** | | Idled | | | | | |----------|----------|------|------|------|-------| | | Capacity | Sc 1 | Sc 3 | Sc 8 | Total | | • | 2,400 | | | | | | Weighted | 3,200 | | | | | | Ranking | 4,000 | | | | | | | 4,700 | | | | | The proposed strategy is evaluated in all scenarios (cost and risk metrics are computed) #### **Scenario Matrix** | | Scenarios | | | | | | | | |--------------------|-------------------------|--|--|--|--|----|--|--| | | #1 #2 #3 #4 #5 #6 #7 #8 | | | | | #8 | | | | Optimized Strategy | | | | | | | | | - These results are used to build a fully populated scorecard with ranking and strategic metrics - The completed scorecard is compared with Draft IRP results to evaluate improvement over previously considered alternatives #### **Fully Populated Scorecard** | | | R | anking Metri | cs | | | 5 | trategic Me | trics | | | |-----------|-----------|-------------------------------|-------------------|------------------|---------------------|------------------------------|---------------------------|-------------|---------------------|---------------------------------|--| | | | | Energy Suppl | у | | Environ | Environmental Stewardship | | | Economic Impact | | | Scenarios | Plan Cost | Short-Term
Rate
Impacts | Risk /
Benefit | Risk
Exposure | Total Plan
Score | CO ₂
Footprint | Water | Waste | Total
Employment | Growth in
Personal
Income | | | 1 | 99.43 | 99.21 | 97.82 | 96.78 | 98.58 | • | • | • | 0.8% | 0.6% | | | 2 | 100.00 | 99.22 | 99.79 | 100.00 | 99.80 | • | • | • | | | | | 3 | 99.15 | 96.03 | 95.91 | 97.73 | 97.72 | • | • | • | | | | | 4 | 99.45 | 99.58 | 95.32 | 89.57 | 96.73 | 0 | • | • | | | | | 5 | 99.83 | 99.50 | 98.87 | 99.47 | 99.56 | 3 | 9 | • | | | | | 6 | 99.16 | 95.61 | 100.00 | 100.00 | 98.64 | • | 0 | • | 0.3% | 0.2% | | | Baseline | 99.68 | 99.77 | 98.98 | 98.96 | 99.45 | 3 | 9 | • | | | | | | | | Total Ranking | Metric Score | 690.47 | | | | | | | ### **Former Planning Strategy C** | | | R | anking Metric | :s | | | | |-----------|-------|---------------------------|----------------------|--------------|---------------------|------------------------------|-----| | | | | Energy Supply | 1 | | Enviro | nme | | Scenarios | PVRR | Short-Term
Rate Impact | PVRR
Risk/Benefit | PVRR Risk | Total Plan
Score | CO ₂
Footprint | | | 1 | 99.22 | 94.09 | 97.68 | 100.00 | 98.04 | • | Г | | 2 | 96.35 | 100.00 | 96.46 | 95.85 | 97.08 | • | Г | | 3 | 95.56 | 94.68 | 100.00 | 100.00 | 96.91 | • | | | 4 | 97.39 | 98.37 | 98.19 | 100.00 | 98.30 | • | | | 5 | 98.90 | 100.00 | 97.49 | 99.17 | 99.04 | • | Г | | 6 | 95.03 | 94.41 | 97.83 | 93.22 | 94.82 | • | | | 7 | 98.88 | 98.94 | 99.45 | 100.00 | 99.22 | • | | | 8 | 99.56 | 99.63 | 99.03 | 99.31 | 99.45 | • | | | | | | Total Ranking | Metric Score | 782.87 | | | | Environ | mental Stew | ardship | Economic | Impact | |------------------------------|-------------|---------|---------------------|---------------------------------| | CO ₂
Footprint | Water | Waste | Total
Employment | Growth in
Personal
Income | | • | • | | 0.9% | 0.6% | | 0 | • | • | | | | • | 0 | • | | | | • | • | • | | | | • | 0 | • | | | | • | • | • | 0.2% | 0.1% | | • | • | • | | | | 0 | 0 | • | | | #### Former Planning Strategy E | | | R | anking Metric | :s | | Strategic Metrics | | | | | | |-----------|----------------------------|---------------------------|----------------------|-----------|---------------------------|------------------------------|-------|-----------------|---------------------|---------------------------------|--| | | | | Energy Supply | 1 | Environmental Stewardship | | | Economic Impact | | | | | Scenarios | PVRR | Short-Term
Rate Impact | PVRR
Risk/Benefit | PVRR Risk | Total Plan
Score | CO ₂
Footprint | Water | Waste | Total
Employment | Growth in
Personal
Income | | | 1 | 100.00 | 100.00 | 96.78 | 95.46 | 98.57 | • | • | • | 0.8% | 0.6% | | | 2 | 97.74 | 98.20 | 99.96 | 98.54 | 98.30 | • | • | • | | | | | 3 | 94.67 | 93.55 | 95.91 | 97.73 | 95.26 | • | • | • | | | | | 4 | 96.83 | 100.00 | 93.42 | 89.57 | 95.48 | • | • | • | | | | | 5 | 98.72 | 99.50 | 96.33 | 98.64 | 98.59 | • | • | • | | | | | 6 | 95.62 | 93.91 | 99.65 | 100.00 | 96.72 | • | • | • | 0.3% | 0.2% | | | 7 | 98.56 | 100.00 | 98.42 | 98.96 | 98.96 | • | • | • | | | | | 8 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | • | • | • | | | | | | Total Ranking Metric Score | | | | | | | | | | | ### Factors considered in developing the recommended strategy: - Optimization analysis of components retained in the Draft IRP - Strategic values - Stakeholder input received - No regrets considerations Recommended Planning Strategy ### **Preliminary Scorecards (Cont'd)** ### **Recommended Planning Strategy** | | | | | | | | 0, | | | | | | | |----------------------------|-------------------------------|---------------------------|----------------------|-----------|---------------------|------------------------------|-------------------|-----------------|---------------------|---------------------------------|--|--|--| | | Ranking Metrics Energy Supply | | | | | | Strategic Metrics | | | | | | | | | | | | | | | mental Stew | Economic Impact | | | | | | | Scenarios | PVRR | Short-Term
Rate Impact | PVRR
Risk/Benefit | PVRR Risk | Total Plan
Score | CO ₂
Footprint | Water | Waste | Total
Employment | Growth in
Personal
Income | | | | | 1 | 99.00 | 95.13 | 100.00 | 99.53 | 98.36 | • | | • | 0.9% | 0.7% | | | | | 2 | 100.00 | 95.58 | 99.40 | 95.30 | 97.85 | • | | • | | | | | | | 3 | 100.00 | 100.00 | 99.81 | 89.37 | 97.56 | • | | • | | | | | | | 4 | 100.00 | 97.40 | 100.00 | 95.37 | 98.36 | | • | • | | | | | | | 5 | 100.00 | 96.43 | 100.00 | 100.00 | 99.19 | • | • | • | | | | | | | 6 | 100.00 | 100.00 | 100.00 | 86.69 | 96.97 | • | • | • | 0.2% | 0.1% | | | | | 7 | 100.00 | 97.24 | 100.00 | 97.03 | 98.70 | • | • | • | | | | | | | 8 | 99.84 | 96.66 | 98.35 | 97.93 | 98.50 | • | • | 0 | | | | | | | Total Ranking Metric Score | | | | 785.49 | | | | • | | | | | | - The recommended planning strategy represents the most favorable blending of portfolio components presented in the Draft IRP - The performance of the recommended strategy across all scenarios implies that it is a more robust strategy with lower likelihood of regret ### **Plan Cost Comparisons** - The preliminary recommended planning strategy balances trade-offs between cost and risk - Figure 1 compares total plans cost with financial risk - The recommended strategy has the lowest total cost - It also has the lowest risk benefit ratio (financial risk is lower relative to potential benefit) The preliminary recommended strategy represents the most favorable blending of portfolio components ### **Financial Impacts** - The tornado diagram to the right illustrates the range of results from the 72 stochastic runs - The 5th percentile is the left edge of the bar - The expected value is at the color transition on the bar - The 95th percentile is the right edge of the bar - The width of the bars indicate the uncertainty around the expected value - The 5th and 95th percentile values are used in addition to the expected value to calculate the risk ratios - Wider bars are riskier # Financial Impacts (Cont'd) ◆ The following table summarizes the ranking metrics worksheet | | Planning | Scenarios | | | | | | | | |----------------------|-------------|-----------|-------|-------|-------|-------|-------|-------|-------| | | Strategies | Sc 1 | Sc 2 | Sc 3 | Sc 4 | Sc 5 | Sc 6 | Sc 7 | Sc 8 | | | В | 179.0 | 135.9 | 114.5 | 137.1 | 133.3 | 106.9 | 132.6 | 125.4 | | PVRR (2010B\$) | С | 175.0 | 133.3 | 114.0 | 134.9 | 131.2 | 104.8 | 130.1 | 124.0 | | PVKK (2010D\$) | Е | 173.7 | 131.5 | 115.0 | 135.7 | 131.5 | 104.2 | 130.5 | 123.5 | | | Recommended | 175.4 | 128.6 | 109.2 | 131.5 | 129.8 | 99.9 | 128.6 | 123.7 | | | | | | | | | | | | | Short-Term Rate | В | 82.49 | 77.49 | 76.22 | 75.88 | 77.04 | 74.91 | 75.72 | 77.16 | | Impacts \$/MWh | С | 83.57 | 74.60 | 77.40 | 76.00 | 75.64 | 75.55 | 75.94 | 74.65 | | (level 2011-18) | E | 78.91 | 75.94 | 78.23 | 74.78 | 76.01 | 75.90 | 75.14 | 74.37 | | (level 2011-10) | Recommended | 82.75 | 77.89 | 73.49 | 76.72 | 78.33 | 71.54 | 77.21 | 76.85 | | | | | | | | | | | | | | В | 1.43 | 1.24 | 0.97 | 1.16 | 1.18 | 1.00 | 1.18 | 1.11 | | Risk / Benefit Ratio | С | 1.41 | 1.29 | 0.88 | 1.14 | 1.16 | 0.90 | 1.14 | 1.06 | | Nisk / Delient Natio | E | 1.42 | 1.24 | 0.92 | 1.19 | 1.18 | 0.89 | 1.15 | 1.05 | | | Recommended | 1.38 | 1.25 | 0.89 | 1.12 | 1.14 | 0.90 | 1.13 | 1.07 | | | | | | | | | | | | | | В | 0.232 | 0.193 | 0.096 | 0.163 | 0.167 | 0.138 | 0.159 | 0.148 | | Risk Ratio | С | 0.226 | 0.201 | 0.086 | 0.154 | 0.165 | 0.126 | 0.150 | 0.141 | | NISK Natio | Е | 0.236 | 0.196 | 0.089 | 0.170 | 0.166 | 0.119 | 0.152 | 0.140 | | | Recommended | 0.227 | 0.202 | 0.092 | 0.161 | 0.164 | 0.128 | 0.155 | 0.143 | ### **Integrated Resource Plan Evaluation Factors** #### Stakeholder Input - Public scoping period - Stakeholder Review Group - Public comment period - Quarterly briefings - Surveys ### Analysis and Strategic Values - Resource optimization and financial analysis - Ranking metrics - Strategic metrics | | | F | anking Metric | s | | Strategic Metrics | | | | | | | |---------------|--------|---------------------------|----------------------|-----------|---------------------|------------------------------|-----------------|-------|---------------------|---------------------------------|--|--| | Energy Supply | | | | | | Environ | Economic Impact | | | | | | | Scenarios | PVRR | Short-Term
Rate Impact | PVRR
Risk/Benefit | PVRR Risk | Total Plan
Score | CO ₂
Footprint | Water | Waste | Total
Employment | Growth in
Personal
Income | | | | 1 | 99.00 | 95.13 | 100.00 | 99.53 | 98.36 | • | • | • | 0.9% | 0.7% | | | | 2 | 100.00 | 95.58 | 99.40 | 95.30 | 97.85 | • | • | 0 | | | | | | 3 | 100.00 | 100.00 | 99.81 | 89.37 | 97.56 | • | • | • | | | | | | 4 | 100.00 | 97.40 | 100.00 | 95.37 | 98.36 | • | • | • | | | | | | 5 | 100.00 | 96.43 | 100.00 | 100.00 | 99.19 | • | • | • | | | | | | 6 | 100.00 | 100.00 | 100.00 | 86.69 | 96.97 | • | • | • | 0.2% | 0.1% | | | | 7 | 100.00 | 97.24 | 100.00 | 97.03 | 98.70 | • | • | • | | | | | | 8 | 99.84 | 96.66 | 98.35 | 97.93 | 98.50 | • | • | 0 | | | | | | | | | | | 20E 40 | | | | | | | | #### No Regrets Consideration - Represent broader considerations not fully captured in the analysis - Addressed in narrative form within the IRP document - No attempt is made to resolve all associated implications ### TVA Leadership Integrated Resource Plan ### High-Level IRP Project Schedule and Next Steps